This is by no means complete
1Odd and Even Functions¶
1.1Even Functions¶
- An even function is such that f(−x)=f(x).
- An example is cosx.
- Even functions are symmetric over the y-axis.
- For an even function, inf
1.2Odd Functions¶
- An odd function is such that f(-x) = -f(x).
- An example is \sin{x}.
- For an odd function, \int_{-a}^{a} f(x) dx = 0
2Surface Area:¶
A=∫2πx~ds
(rotated about y-axis)
A=∫2πy~ds
(rotated about x-axis)
3Arc Length:¶
ds=\sqrt{1+\frac{dx}{dy}^2}~dy
ds=\sqrt{1+\frac{dy}{dx}^2}~dx
3.1For parametric:¶
(Use the same initial equations)
ds=\sqrt{\frac{dy}{dt}^2+\frac{dx}{dt}^2}~dt
3.1.1Horizontal and vertical tangents:¶
if \frac{dx}{dt}=0 and \frac{dy}{dt}\neq0 it is a vertical tangent
if \frac{dy}{dt}=0 and \frac{dx}{dt}\neq0 it is a horizontal tangent
the t value you get from the equation must be substituted in the respective parametric equation to get the tangent at that point.
4Polar Curves:¶
r=f(θ)
x=f(θ) cos(θ)
y=f(θ) sin(θ)
0≤θ≤2π
4.1for area:¶
A=\frac{1}{2}\int{(f(θ))^2 dθ}_{\theta_1}^{\theta_2}
(A=1/2 ∫▒〖r^2 dθ)