This is by no means complete
1Odd and Even Functions¶
1.1Even Functions¶
- An even function is such that $f(-x) = f(x)$.
- An example is $\cos{x}$.
- Even functions are symmetric over the y-axis.
- For an even function, $\inf_{-a}^{a} f(x) dx = 2\int_{0}^{a} f(x) dx$
1.2Odd Functions¶
- An odd function is such that $f(-x) = -f(x)$.
- An example is $\sin{x}$.
- For an odd function, $\int_{-a}^{a} f(x) dx = 0$
2Surface Area:¶
$A=∫2πx~ds $
(rotated about y-axis)
$A=∫2πy~ds$
(rotated about x-axis)
3Arc Length:¶
$ds=\sqrt{1+\frac{dx}{dy}^2}~dy$
$ds=\sqrt{1+\frac{dy}{dx}^2}~dx$
3.1For parametric:¶
(Use the same initial equations)
$ds=\sqrt{\frac{dy}{dt}^2+\frac{dx}{dt}^2}~dt$
3.1.1Horizontal and vertical tangents:¶
if $\frac{dx}{dt}=0$ and $\frac{dy}{dt}\neq0$ it is a vertical tangent
if $\frac{dy}{dt}=0$ and $\frac{dx}{dt}\neq0$ it is a horizontal tangent
the $t$ value you get from the equation must be substituted in the respective parametric equation to get the tangent at that point.
4Polar Curves:¶
$r=f(θ)$
$x=f(θ) cos(θ)$
$y=f(θ) sin(θ)$
$0≤θ≤2π$
4.1for area:¶
$A=\frac{1}{2}\int{(f(θ))^2 dθ}_{\theta_1}^{\theta_2}$
$(A=1/2 ∫▒〖r^2 dθ)$