Loading [MathJax]/jax/element/mml/optable/BasicLatin.js

Calculus CC-BY-NC

Maintainer: admin

This is by no means complete

1Odd and Even Functions

1.1Even Functions

  • An even function is such that f(x)=f(x).
  • An example is cosx.
  • Even functions are symmetric over the y-axis.
  • For an even function, inf

1.2Odd Functions

  • An odd function is such that f(-x) = -f(x).
  • An example is \sin{x}.
  • For an odd function, \int_{-a}^{a} f(x) dx = 0

2Surface Area:

A=∫2πx~ds
(rotated about y-axis)
A=∫2πy~ds
(rotated about x-axis)

3Arc Length:

ds=\sqrt{1+\frac{dx}{dy}^2}~dy
ds=\sqrt{1+\frac{dy}{dx}^2}~dx

3.1For parametric:

(Use the same initial equations)
ds=\sqrt{\frac{dy}{dt}^2+\frac{dx}{dt}^2}~dt

3.1.1Horizontal and vertical tangents:

if \frac{dx}{dt}=0 and \frac{dy}{dt}\neq0 it is a vertical tangent
if \frac{dy}{dt}=0 and \frac{dx}{dt}\neq0 it is a horizontal tangent
the t value you get from the equation must be substituted in the respective parametric equation to get the tangent at that point.

4Polar Curves:

r=f(θ)
x=f(θ) cos⁡(θ)
y=f(θ) sin⁡(θ)
0≤θ≤2π

4.1for area:

A=\frac{1}{2}\int{(f(θ))^2 dθ}_{\theta_1}^{\theta_2}
(A=1/2 ∫▒〖r^2 dθ)