Maintainer: admin
The pdf is here http://cs.mcgill.ca/~yzhou53/stuff/cribsheet.pdf
The source is:
\documentclass[landscape]{article} \usepackage{amsmath} \usepackage{amssymb} \usepackage{amsthm} \usepackage[T1]{fontenc} \usepackage{multicol} \usepackage[margin=1cm]{geometry} \usepackage[margin=1cm]{geometry} \setlength{\parindent}{0in} \begin{document} \begin{multicols}{3} Testing the real standard dev of a sample: $$W=\frac{(n-1)S^2}{\sigma^2_0}, W \sim \chi^2\:df=n-1$$ Assume random/independent sample, normally distributed pop. Testing if two population variances are the same: $$F= \frac{S^2_1}{S^2_2}, \:df=n_1-1,n_2-1$$ Assume two samples are randomly and independently selected from their two populations, which are both normally distributed One-Way Anova $$SST = \sum_{k=1}^K n_k(Y_k - \hat Y)^2$$ $$MST = \frac{SST}{K-1}$$ $$SSE = \sum_{k=1}^K\sum_{i=1}^{n_k}(Y_{ij} - Y_k)^2$$ $$s_p^2 = MSE = \frac{SSE}{n-K}$$ $$F=\frac{MST}{MSE}$$ $$TSS = \Sigma_{k=1}^K\Sigma_{i=1}^{n_k}(Y_{ij} - Y)^2 = (n-1)s^2$$ Assume random/independent selection, and each group is normally distributed Confidence interval for difference between 2 groups if K = 2 $$y_1 - y_2 \pm t_{\alpha/2,n_1+n_2-2}\sqrt{\frac{s^2_p}{n_1}+\frac{s^2_p}{n_2}},\:df=n_1+n_2+2$$ $$y_1-y_2\pm t_{\alpha/2,n-K}\sqrt{\frac{MSE}{n_i}+\frac{MSE}{n_j}}\:df=n-K$$ Bonferroni correction $$\alpha = \frac{\alpha_F}{K(K-1)/2}$$ Two-Way Anova with block design $$TSS = \sum_{i=1}^K\sum_{j=1}^B(Y_{ij}-Y)^2$$ $$SST = B\sum_{i=1}^K(Y_{i-} - Y)^2$$ $$SSB = K\sum_{j=1}^B(Y_{-j}-Y)^2$$ $$SSE = TSS - SSB - SST = \sum_{i_1}^{K}\sum_{j=1}^{B}(Y_{ij}-Y_{i-}-Y_{-j}+Y)^2$$ Assume errors are normally distributed, blocks are as homogenous as possible. Treatments are randomly assigned to the units in each block, treatment and block effects are all constants. Two-Way Anova with Factors Overall test $$SSE = \sum_{i=1}^{K}\sum_{j=1}^{J}\sum_{r=1}^{R}(Y_{ijr} - Y_{ij-})^2$$ $$SST = R\sum_{i=1}^{K}\sum_{j=1}^{J}(Y_{ij-}-Y)^2$$ \begin{center} $MST = \frac{SST}{JK-1}$ $MSE = \frac{SSE}{n-KJ}$ \end{center} Decomposed tests $$SS(A) = RJ\sum_{i=1}^{K}(\bar y_{i--} - \bar y_{---})^2$$ $$SS(B) = RK\sum_{j=1}^{J}(\bar y_{-j-} - \bar y_{---})^2$$ \begin{center} $MS(B) = \frac{SS(B)}{J-1}$ $MS(A) = \frac{SS(A)}{K-1}$ \end{center} $$SS(AB) = R\sum_{j=1}^J\sum_{i=1}^{K}(\bar y_{ij-} - \bar y_{i--} - \bar y_{-j-} + \bar y_{---})^2$$ $$MS(AB) = \frac{SS(AB)}{KJ-J-K+1}$$ $$F_{AB} = \frac{MS(AB)}{MSE}\:,df=KJ-J-K+1,n-JK$$ if not rejected, then: $$F_A = \frac{MS(A)}{MSE}\:,df=K-1,n-JK$$ Assume: samples are random/independent, each group normally distributed. same \# of experimental units randomly assigned to each $R\times J$ possible factor combinations. Errors are normally distributed with the same var as population. Linear Regression $$\sigma_{\hat{\beta}_1} = \frac{\sigma}{\sqrt{S_{XX}}}$$ $$s^2 = \frac{\sigma_{i=1}^{n}(y_i-\hat{y}_i)^2}{n-2} = \frac{SSE}{n-2}$$ $$SSE = SS_{YY} - \hat{\beta}_1SS_{XY}$$ $$T = \frac{\hat{\beta}_1 - 0}{\sigma/\sqrt{SS_{XX}}}$$ $$\hat{\beta}_1 \pm t_{n-2,\alpha/2}\frac{s}{\sqrt{SS_{XX}}}$$ $$r = \frac{SS_{XY}}{\sqrt{SS_{XX}SS_{YY}}}$$ $$SS_{XY} = \sum_{i=1}^n(y_i - \bar{y})(x_i - \bar{x})$$ $$SS_{XX} = \sum_{i=1}^n(x_i - \bar{x})^2$$ $$SS_{YY} = \sum_{i=1}^n(y_i - \bar{y})^2$$ $$r = \hat{\beta}_1\frac{s_x}{s_y}$$ $$SSE = \sum_{i=1}^n(y_i - \hat{y}_i)^2$$ $$r^2 = 1 - \frac{SSE}{SS_{YY}}$$ $$r \pm t_{\alpha/2,n-2}\sqrt{(1-r^2)/(n-2)}$$ In small samples: $$Z = \ln{\frac{1+r}{1-r}}$$ $$Z \pm z_{\alpha/2}/\sqrt{(n-3)} = (c_L, c_U)$$ $$[\frac{exp(2*c_L - 1)}{exp(2*c_L + 1)},\frac{exp(2*c_U - 1)}{exp(2*c_U + 1)}]$$ $$E(\hat{y}(x_0)) = \beta_0 + \beta_1x_0$$ $$s_{\hat y(x_0)} = s\sqrt{\frac{1}{n} + \frac{(x_0 - \bar x)^2}{SS_{XX}}}$$ $$S_{\tilde{y}(x_0)} = s\sqrt{1 + \frac{1}{n} + \frac{(x_0 - \bar{x})^2}{SS_{XX}}}$$ Assume x as constant(error around the measurement of x is negligible), errors are independent random variables with the same variance as the population(Y), mean of zero. Y is a random variable with the same variance as errors. Assume that $\hat \beta_1$ and $\hat \beta_0$ are normally distributed. Multiple Regression Assume: $E(\epsilon_i) = 0$ for all i, $Var(\epsilon_i) = \sigma^2$, normally and independently distributed errors. $$s^2 = \frac{\sum_{i=1}^n(y_i-\hat{y}_i)^2}{n-(K+1)}$$ $$t = \frac{\hat{\beta}_j - \beta^*_j}{s\sqrt{c_{jj}}}$$ $c_{jj}$ is the variance of $\hat{\beta}_j$. Assume x as constant(error around the measurement of x is negligible), errors are independent random variables with the same variance as the population(Y), mean of zero. Y is a random variable with the same variance as errors. Measuring the fit of the model $$ SSE = \sum_{i=1}^n(y_i-\hat{y}_i)^2$$ $$ SS_{yy} = \sum_{i=1}^n(y_i - \bar{y})^2$$ $$R^2 = 1 - \frac{SSE}{SS_{yy}}$$ $$R^2_a = 1 - [\frac{n-1}{n-(K+1)}](\frac{SSE}{SS_{yy}})$$ $$F = \frac{(SS_{YY} - SSE)/k}{SSE/[n-(K+1)]} = \frac{R^2/K}{(1-R^2)/(n-(K+1))}$$ Comparing Nested Models $$F = \frac{(SSE_{M_0} - SSE_{M_1})/(k-g)}{SSE_{M1}/(n-(k+1))},\:df=k-g,n-k-1$$ $$e^{std}_i = \frac{e_i}{s}$$ Categorical Data $$\chi^2 = \sum_{j=1}^k\frac{(n_j - np_j^{(0)})^2}{np_j^{(0)}}$$ $$\chi^2 = \sum_{j=1}^k\frac{(observed - expected)^2}{expected}$$ The degrees of freedom is the difference between k - 1 and the number of unspecified probabilities in $H_0$. Test for independence $E(n_{jk}) = n\hat{p}_{j-}\hat{p}_{-k}$ $df = rc - 1 - (r+c-2) = (r-1)(c-1)$ Non-parametric statistics $$D_i = X_i - \eta_0$$ use binomial test on $D_i$, $p=0.5$ $$z = \frac{X-np}{\sqrt{npq}}$$ For matched pairs, $D_i = X_i - Y_i$, then do test on $D_i$ Wilcoxon Paired Rank Sum $T^+$ is rank sum of positive $D_i$ $$E(T^+) = \frac{n(n+1)}{4}$$ $$Var(T^+) = \frac{n(n+1)(2n+1)}{24}$$ Use Z statistic Wilcoxon Independent Rank Sum $$U = n_1n_2 + \frac{n_1(n_1 + 1)}{2} - W$$ Where W is the rank sum of first sample $$Z = \frac{U-(n_1n_2/2)}{\sqrt{n_1n_2(n_1+n_2+1)/12}}$$ Assume independent and identically distributed data. \end{multicols} \begin{multicols}{2} \begin{tabular}{c | c| c|c|c|c} Source & df & SS & MS & F & p-value \\ \hline Treatments&$K-1$&$SST$&$MST=\frac{SST}{K-1}$&$\frac{MST}{MSE}$&Pr(F\* > F)\\ \hline Error&$n-K$&$SSE$&$MSE=\frac{SST}{K-1}$&&\\ \hline Total&$n-1$&$TSS$&&&\\ \end{tabular} \begin{tabular}{c | c| c|c|c} Source& df & SS & MS & F \\ \hline Treatments&$K-1$&$SST$&$MST=\frac{SST}{K-1}$&$\frac{MST}{MSE}$\\ \hline Blocks&$B-1$&$SSB$&$MSB=\frac{SSB}{B-1}$&$\frac{MSB}{MSE}$\\ \hline Error&$n-K-B+1$&$SSE$&$MSE=\frac{SSE}{n-K-B+1}$&\\ \hline Total&$n-1$&$TSS$&&\\ \end{tabular} \end{multicols} \begin{tabular}{c | c| c|c|c} Source&df&SS&MS&F\\ \hline $A$&$K-1$&$SS(A)$&$MS(A)=\frac{SS(A)}{K-1}$&$\frac{MS(A)}{MSE}$\\ \hline $B$&$J-1$&$SS(B)$&$MS(B)=\frac{SS(B)}{J-1}$&$\frac{MS(B)}{MSE}$\\ \hline $A \times B$&$KJ - K - J + 1$&$SS(AB)$&$MS(AB)=\frac{SS(AB)}{KJ-K-J+1}$&$\frac{MS(AB)}{MSE}$\\ \hline Error&$n-KJ$&$SSE$&$MSE = \frac{SSE}{n-KJ}$&\\ \hline Total&$n-1$&$TSS$&&\\ \end{tabular} \end{document}