Loading [MathJax]/jax/element/mml/optable/GeneralPunctuation.js

Monday, March 18, 2013 CC-BY-NC
Cauchy Criterion for function sequences, introduction to the norm

Maintainer: admin

1Criteria for a sequence of functions not to uniformly converge

Lemma: A sequence of functions (fn) on AR to R does not converge uniformly on A0A to f:A0R for some ϵ>0, there exists a subsequence (fnk) of (fn) and a sequence (xk)A0 such that |fnk(xk)f(xk)|ϵ for all kN.

Definition: Let AR, φ:AR a function. If φ is bounded on A, we define the uniform norm of φ on A, denoted

note that \| \varphi \|_A \leq \epsilon \iff |\varphi(x)| \leq \epsilon for all x \in A.

Lemma: A sequence of bounded functions (f_n) on A \subseteq \mathbb R converges uniformly to f on A \iff \| f_n - f \|_A \to 0.

Proof: (\Rightarrow) then, for a given \epsilon > 0 there exists some N \in \mathbb N such that if n \geq N then |f_n(x) - f(x)| < \epsilon / 2 for all x \in A. Then

\sup \{ | f_n(x) - f(x)| : x \in A \} = \|f_n - f\|_A \leq \frac{\epsilon}{2} < \epsilon

i.e. |\|f_n - f\|_A - 0| < \epsilon so \displaystyle\lim_{n \to \infty} \| f_n - f \|_A = 0

(\Leftarrow) for a given \epsilon > 0 there exists some N \in \mathbb N such that if n \geq N, | \|f_n - f\|_A - 0| < \epsilon, i.e. \|f_n - f\|_A < \epsilon, i.e.

\sup \{|f_n(x) - f(x)| : x \in A \} < \epsilon

i.e. |f_n(x) - f(x)| < \epsilon for all x \in A i.e. f_n converges uniformly to f on A.

2Cauchy Criterion

Theorem: Let (f_n) be a sequence of bounded functions on A \subseteq \mathbb R to \mathbb R. (f_n) converges uniformly to a bounded function f on A \iff for a given \epsilon > 0, there exists some N \in \mathbb N such that if n, m \geq N then \|f_n - f_m\|_A < \epsilon.

Proof: (\Rightarrow) \epsilon > 0 given, there exists N \in \mathbb N such that if n \geq N, |f_n(x) - f(x)| < \epsilon / 4 for all x \in A. Thus, if n, m \geq N

\begin{align*} |f_n(x) - f_m(x)| &= |f_n(x) - f(x) + f(x) - f_m(x)| \\ &\leq |f_n(x) - f(x)| + |f_m(x) - f(x)| \\ &< \frac{\epsilon}{4} + \frac{\epsilon}{4} = \frac{\epsilon}{2} \end{align*}

thus \sup \{|f_n(x) - f_m(x)| : x \in A \} = \| f_n - f_m \|_A \leq \epsilon/2 < \epsilon.

(\Leftarrow) if \epsilon > 0 is given, there exists some N \in \mathbb N such that if n, m \geq N, \|f_n - f_m\|_A < \epsilon / 2. Thus for x \in A, |f_n(x) - f_m(x)| < \epsilon / 2, i.e. (f_n(x)) is a Cauchy sequence in \mathbb R. Thus f_n(x) converges in \mathbb R. Call its limit f(x) - we must show that f_n converges uniformly to f. If we let m \to \infty we can obtain

|f_n(x) - f(x)| \leq \frac{\epsilon}{2} < \epsilon

by the squeeze theorem. Thus f_n \rightrightarrows f. It remains to show that f is bounded. f_N is bounded, i.e. |f_N(x)| \leq B for all x \in A for some B \in \mathbb R. Thus since |f_N(x) - f(x)| < \epsilon for all x \in A, |f(x)| < \epsilon + |f_N(x)| \leq B + \epsilon for all x \in A.

3Continuity of functions formed by uniformly convergent sequences

Theorem: Let (f_n) be a sequence of continuous functions on A \subseteq \mathbb R and suppose f_n \rightrightarrows f on A to a function f : A \to \mathbb R. Then f is continuous on A.

Proof: f_n \rightrightarrows f on A thus for a given \epsilon > 0, there exists some N \in \mathbb N such that if n \geq N then |f_n(x) - f(x)| < \epsilon/3 for all x \in A. In particular, |f_N(x) - f(x)| < \epsilon/3 for all x \in A. f_N(x) is continuous on A. Let c \in A, \epsilon > 0 given, \exists \delta > 0 such that if |x - c| < \delta then |f_N(x) - f_N(c)| < \epsilon / 3. Thus if |x - c| < \delta,

\begin{align*} |f(x) - f(c)| &= |f(x) - f_N(x) + f_N(x) - f_N(c) + f_N(c) - f(c)| \\ &\leq |f(x) - f_N(x)| + |f_N(x) - f_N(c)| + |f_N(c) - f(c)| \\ &< \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon \end{align*}

i.e. f is continuous at c.