- 1 Introduction and definitions
- 2 Discrete random variables
- 3 Continuous random variables
- 4 Multivariate distributions
- 4.1 Definitions
- 4.2 Marginal and conditional distributions
- 4.3 Independent random variables
- 4.4 The expected value of a fuction of random variables
- 4.5 Special theorems
- 4.6 Covariance
- 4.7 The expected value and variance of linear functions of random variables
- 4.8 The multinomial distribution
- 4.9 More than two random variables
- 5 Functions of random variables
- 6 Law of large numbers and the central limit theorem
- 7 Information theory
1Introduction and definitions¶
1.1Basic definitions¶
- Union of two events
- $P(A \cup B) = P(A) + P(B) - P(A \cap B)$
1.2Permutations and combinations¶
- Permutations (i.e. when order does matter)
- $\displaystyle P^n_r = \frac{n!}{(n-r)!}$
- Combinations (i.e. when order does not matter)
- $\displaystyle C^n_r = \frac{n!}{(n-r)!r!}$
1.3Conditional probability and independence¶
- Conditional probability
- $\displaystyle P(A|B) = \frac{P(A \cap B)}{P(B)}$
- Definitions of independence
- when $P(B|A) = P(B)$ and $P(A|B) = P(A)$ = $P(A \cap B) = P(A)P(B)$
1.4Bayes' rule and the law of total probability¶
No need to memorise this
2Discrete random variables¶
2.1Basic definitions¶
- Properties of a probability function
- Always non-negative, and the sum of all the values is 1
- Expected value
- $\displaystyle E(X) = \sum x P(X = x)$
- Variance
- $Var(X) = E(X^2) - E(X)^2 = E(X^2) - \mu^2$
2.2Special discrete distributions¶
2.2.1The binomial distribution¶
- Probability density function
- $P(X = x) = C^n_x p^n q^{n-x}$
- Expected value
- $E(X) = np$
- Variance
- $Var(X) = npq$
- Moment generating function
- $M_X(t) = (pe^t + q)^n$
2.2.2The geometric distribution¶
- Probability density function
- $P(X = x) = pq^{x-1}$
- Expected value
- $E(X) = \frac{1}{p}$
- Variance
- $Var(X) = \frac{q}{p^2}$
- Moment generating function
- $\displaystyle M_X(t) = \frac{pe^t}{1-qe^t}$
2.2.3The negative binomial distribution¶
Don't need to memorise this
2.2.4The hypergeometric distribution¶
Don't need to memorise this
2.2.5The Poisson distribution¶
- Probability density function
- $\displaystyle P(X = x) = \frac{\lambda^x e^{-\lambda}}{x!}$
- Expected value
- $E(X) = \lambda$
- Variance
- $Var(X) = \lambda$
- Moment generating function
- $e^{-\lambda(1-e^t)} = e^{\lambda(e^t-1)}$
2.3Moment generating functions¶
- The significance of moment generating functions
- $M_X^{(n)} = E(X^n)$
3Continuous random variables¶
3.1Distribution functions¶
- Properties of a cumulative distribution function $F(y)$
- Nondecreasing, from 0 to $\infty$, continuous
3.2Continuous random variables¶
- Relationship between distribution and density functions
- The distribution function $\displaystyle F(x) = \int_{-\infty}^x f(t) \,dt$
- Properties of a probability density function
- Non-negative, and the integral over the domain is equal to 1
- Expected value for a continuous rv
- $\displaystyle E(g(X)) = \int_{-\infty}^{\infty} g(x) f(x) \,dx$
- Variance for a continuous rv
- $Var(X) = E(X^2) - \mu^2$ and $Var(aX + b) = a^2 Var(X)$
- Moment generating function for a continuous rv
- $\displaystyle M_X(t) = E(e^{tx}) = \int_{-\infty}^{\infty} e^{tx} f(x) \,dx$
3.3Special continuous distributions¶
3.3.1The uniform distribution¶
Probability density function
$\displaystyle f(x) = \begin{cases} 0 & \text{ if } -\infty < x < a \\ \frac{1}{b-a} & \text{ if } a \leq x \leq b \\ 0 & \text{ if } b < x < \infty \end{cases}$
- Expected value
- $\displaystyle E(X) = \frac{a+b}{2}$
- Variance
- $\displaystyle Var(X) = \frac{(b-a)^2}{12}$
Distribution function
$\displaystyle F(x) = \begin{cases} 0 & \text{ if } x < a \\ \frac{x-a}{b-a} & \text{ if } a \leq x \leq b \\ 1 & \text{ if } x > b \end{cases}$
- Moment generating function
- $\displaystyle M_X(t) = \frac{e^{tb} - e^{ta}}{t(b-a)}$
3.3.2The exponential distribution¶
Probability density function
$\displaystyle f(x) = \begin{cases} 0 & \text{ if } y \leq 0 \\ \frac{1}{\beta} e^{-y/\beta} & \text{ if } y >0 \end{cases}$
- Expected value
- $E(X) = \beta$
- Variance
- $Var(X) = \beta^2$
Distribution function
$\displaystyle F(x) = \begin{cases} 0 & \text{ if } y < 0 \\ 1 - e^{-y / \beta} & \text{ if } y \geq 0 \end{cases}$
- Moment generating function
- $\displaystyle M_X(t) = \frac{1}{1-\beta t}$
- Memoryless property (definitive feature)
- $P(Y > s+t | Y > s) = P(Y > t)$
3.3.3The gamma distribution¶
- Gamma function
- $\displaystyle \Gamma(\alpha) = \int_0^{\infty} x^{\alpha - 1}e^{-\alpha} \,dx$
- Properties of the gamma function
- $\Gamma(1) = 1$, $\Gamma(n+ 1) = n\Gamma(n)$ = n!, $\Gamma(\frac{1}{2}) = \sqrt{\pi}$
Probability density function
$\displaystyle f(x) = \begin{cases} 0 & \text{ if } x \leq 0 \\ \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1}e^{-x/\beta} & \text{ if } x > 0 \end{cases}$
- Expected value
- $E(X) = \alpha\beta$
- Variance
- $Var(X) = \alpha \beta^2$
- Moment generating function
- $\displaystyle M_X(t) = \frac{1}{(1 - \beta t)^{\alpha}}$ for $t < \frac{1}{\beta}$
3.3.4The normal distribution¶
- Probability density function
- $\displaystyle f(x) = \frac{1}{\sqrt{2\sigma^2 \pi}}e^{-\frac{1}{2} \left ( \frac{(x-\mu)^2}{\sigma^2} \right ) }, \quad -\infty < x < \infty$
- Expected value
- $E(X) = \mu$
- Variance
- $Var(X) = \sigma^2$
- Moment generating function
- $\displaystyle M_X(t) = E(e^{tX}) = e^{\mu t + \frac{\sigma^2 t^2}{2}} $
3.3.5The beta distribution¶
Don't need to memorise this
3.3.6The Cauchy distribution¶
- Probability density function
- $\displaystyle f(x) = \frac{1}{\pi} \frac{1}{1 + x^2} \quad -\infty < x < \infty$
- Expected value
- Does not exist
- Variance
- Does not exist
3.4Chebychev's inequality¶
- Markov's inequality
- $\displaystyle P(X > \epsilon) \leq \frac{E(X)}{\epsilon}$
- Chebychev's inequality
- $\displaystyle P(|X - \mu| > \epsilon) \leq \frac{\sigma^2}{\epsilon^2}$
4Multivariate distributions¶
4.1Definitions¶
- Joint probability density function
- $f(y_1, y_2) = P(Y_1 = y_1, Y_2 = y_2)$
- Joint distribution function
- $F(y_1, y_2) = P(Y_1 \leq y_1, Y_2 \leq y_2)$
- Probability in a region
- $\displaystyle P(a_1 < Y_1 < b_1, a_2 < Y_2 < b_2) = \int_{a_2}^{b^2} \int_{a_1}^{b_1} f(y_1, y_2) \,dy_1 \,dy_2$
4.2Marginal and conditional distributions¶
- Marginal probability function
- For the discrete case
- Marginal density function
- For the continuous case; $\displaystyle f_1(y_1) = \int f(y_1, y_2)\,dy_2$
- Conditional probability density function
- $\displaystyle f_{12}(y_1|y_2) = P(Y_1 = y_2 | Y_2 = y_2) = \frac{P(Y_1 = y, Y_2 = y_2)}{P(Y_2 = y_2)} = \frac{f(y_1, y_2)}{f_2(y_2)}$
- Conditional expectation
- $\displaystyle E(g(Y_1)|Y_2 = y_2) = \int g(y_1) f_{12}(y_1|y_2)\,dy_1$
4.3Independent random variables¶
- Independence
- If $f(y_1, y_2) = f_1(y_1) f_2(y_2)$ and the same for the cumulative version
4.4The expected value of a fuction of random variables¶
- Expected value
- $\displaystyle E(g(Y_1, Y_2)) = \int \int g(y_1, y_2) f(y_1, y_2) \,dy_1 \,dy_2$
4.5Special theorems¶
Can all be derived.
4.6Covariance¶
- Covariance
- $Cov(Y_1, Y_2) = E(Y_1 Y_2) - \mu_1 \mu_2$
- Correlation coefficient
- $\displaystyle \rho = \frac{Cov(Y_1, Y_2)}{\sigma_1 \sigma_2}$
4.7The expected value and variance of linear functions of random variables¶
Can all be derived
4.8The multinomial distribution¶
- Joint probability density function:
- $\displaystyle P(X_1 = x_1, \ldots, X_k = x_k) = \frac{n!}{x_1! \ldots x_k!}p_1^{x_1} \ldots p_k^{x_k}$
4.9More than two random variables¶
Whatever
5Functions of random variables¶
5.1Functions of continuous random variables¶
5.1.1The univariate case¶
5.1.2The multivariate case¶
5.2Sums of independent random variables¶
5.2.1The discrete case¶
- Poisson
- $X+Y$ where both are Poisson distributions is also one with a mean that is the sum of their means
5.2.2The jointly continuous case¶
Eh
5.3The moment generating function method¶
- Gamma
- $X + Y$ with Gamma$(\alpha_1, \beta)$ and Gamma$(\alpha_2, \beta)$ results in Gamma$(\alpha_1+\alpha_2, \beta)$
- Exponential
- If same $\beta$, $X+Y$ results in Gamma$(2, \beta)$
- Normal
- $X+Y$ for $N(\mu_x, \sigma^2_x)$ and $N(\mu_y, \sigma^2_y)$ results in $N(\mu_x + \mu_y, \sigma^2_x + \sigma^2_y)$
5.3.1A summary of moment generating functions¶
6Law of large numbers and the central limit theorem¶
6.1Law of large numbers¶
Not important
6.2The central limit theorem¶
- Central limit theorem
- $\displaystyle \frac{S_n - n \mu}{\sigma}{\sqrt{n}}$ maps to $N(0, 1)$
7Information theory¶
Don't need to know this